EPOXIDATION OF cis/trans-ENOL ESTERS BY DIMETHYLDIOXIRANE: KINETICS

Pamela M. Leggett-Robinson, Pedro Vasquez and A.L. Baumstark*
Department of Chemistry, Center of Biotech and Drug Design
Georgia State University, Atlanta, Georgia 30303-3083, USA
e-mail: chealb@panther.gsu.edu; fax: 404-651-1416

Abstract. The epoxidation of a series of cis/trans-enol esters with R groups of varying steric bulk by dimethyldioxirane in dried acetone at 23 0 C produced the corresponding cis/trans-epoxides as the sole observable products. The kinetics study showed k_{cis} / k_{trans} ratios of 1.6 to 2.5. The k_{2} values for the cis-compounds were essentially identical while those for the trans-compounds showed a consistent decrease with increasing steric bulk.

Introduction

Dimethyldioxirane, either *in situ*¹ or in an isolated solution,² has been shown to be a versatile and useful oxidation reagent for a broad scope of synthetic applications.³ Epoxidation is one of the most investigated reactions of dimethyldioxirane. Epoxidation by dimethyldioxirane, 1, has been shown to be stereospecific and postulated to occur via a concerted electrophilic process with a "spiro" transition state.⁴ The epoxidation of simple alkenes and α,β -unsaturated carbonyl compounds by 1 has been extensively investigated.³ Previous studies have shown this electrophilic process to be affected by steric effects within a series and by electronic effects between series.⁵ However, the epoxidation of enol esters by 1 has not been extensively investigated other than that for isolated reports.⁶ We report here the results of a kinetics study of the epoxidation of a series of *cis/trans*-enol esters with substituents of varying steric bulk by dimethyldioxirane in dried acetone.

Results and Discussion

The epoxidation of a series of *cis* (2-6) and *trans* (7-12) substituted enol esters at 23 °C by dimethyldioxirane (1) produced the corresponding epoxides as the sole products in all cases (reaction 1).

$$R_1$$
 R_2 R_3 R_4 R_5 R_5 R_5 R_7 R_8 R_9 R_9

cis $(R_3 = H)$ R_1 , R_2 : (2) Me, Ph; (3) Me, Me; (4) Me, Et; (5) Me, iPr; (6) Et, iPr trans $(R_2 = H)$ R_1 , R_3 : (7) Me, Ph; (8) Me, Me; (9) Me, Et; (10) Me, iPr; (11) Et, iPr; (12) Me, tBu

The epoxides were identified and characterized by comparison of the spectral data with literature values.⁷ Kinetic studies were carried out at 23 0 C in dried acetone using UV techniques. The k_{2} values for 2,7, and 12 were determined from the pure starting material. The k_{2} values for 3-6, 8-11 were determined from pure *cis/trans* mixtures.⁸ In selected cases, k_{2} values were checked under pseudo first order conditions with 1:10 and 10:1 ratios of dioxirane to enol ester and were found to be identical (within experimental error \pm 5%). The kinetic results for the *cis* and *trans* series enol esters are listed in Tables 1 and 2.

Table 1. Second order rate constants for the epoxidation of *cis* enol esters (2-6) by dimethyldioxirane in dried acetone at 23 °C.

Entry	Compound	$k_2 (M^{-1} s^{-1})$	k ₂ (rel) ^a	
2	Ph	$1.9 \pm 0.2 \times 10^{-7}$	0.24	
3		$3.0 \pm 0.1 \times 10^{-2}$	= 1.0	
4		$8.1 \pm 0.3 \times 10^{-7}$	1.0	
5		$7.9 \pm 0.2 \times 10^{-7}$	0.99	
6		$7.1 \pm 0.2 \times 10^{-3}$	0.89	

normalized for the series;

The *cis*-phenyl substituted enol ester, 2, is considerably less reactive than the *cis*-alkyl substituted enol esters. A similar trend is observed⁵ with the *cis*-phenyl substituted alkenes and *cis*-alkyl substituted alkenes. The k_2 values (R=alkyl) for *cis*-enol esters 3-6 are essentially identical. These kinetic results are consistent with those found for the *cis*-alkenes. Overall, the k_2 values for *cis*-enol esters were found to be

less than those of corresponding cis-alkenes⁴ and considerably greater than those of α,β -unsaturated carbonyl compounds.⁵

Table 2. Second order rate constants for the epoxidation of *trans* enol esters (7-12) by dimethyldioxirane in dried acetone at 23 °C.

Entry	Compound	k ₂ (M-1 s-1)	k (rel)ª	k_{cis}/k_{trans}	
7	O Ph	$1.2 \pm 0.2 \times 10^{-2}$	0.24	1.6	
8		$5.0 \pm 0.1 \times 10^{-2}$	= 1.0	1.6	
9		$4.7 \pm 0.3 \times 10^{-2}$	0.94	1.7	
10		$3.6 \pm 0.2 \times 10^{-2}$	0.74	2.2	
11		$2.8 \pm 0.2 \times 10^{-2}$	0.58	2.5	
12		$6.7 \pm 0.2 \times 10^{-3}$	0.13	N/A	

a normalized for the series

The *trans*-phenyl substituted enol ester, 7, is considerably less reactive than the *trans*-methyl substituted enol ester but more reactive than 12. For the *trans* series (7-12), a consistent decrease in k_2 is observed with increasing steric bulk of the R groups. In the enol ester series, the *trans*-enol esters are found to be slightly less reactive than the corresponding *cis*-enol esters. However, as steric bulk increased in the series, the *cis/trans* ratio increased, e.g. for enol esters 3/8, the *cis/trans* ratio was 1.6 while that for 6/11 was 2.5. In contrast, for simple alkenes, k_{cis} / k_{trans} ratios for the epoxidation by 1 of 7-22 have been found.⁴ A plot of k_{rel} *trans*-enol esters vs. k_{rel} *trans*-alkenes, showed the k_2 results for the *trans*-enol esters to be ~70% less sensitive to steric effects than the corresponding *trans*-alkenes.^{5b} Thus, the lower k_{cis} / k_{trans}

ratios in the present study are partially due to a decrease in sensitivity to steric effects in the enol ester series and the increased reactivity of the *trans* compounds.

In summary, the *cis*- and *trans*- enol esters (2-12) are slightly less reactive than the corresponding alkenes⁵ and considerably more reactive than the corresponding α,β -unsaturated carbonyl compounds.^{5b} The *trans*-enol esters are more reactive and less sensitive to steric influences than the corresponding *trans*-alkenes. Two factors that influence the *cis/trans*-enol ester ratio are: 1) the steric effects of the OAc group on the *trans*-enol ester and 2) the increased reactivity of the *trans*-enol ester.

Acknowledgment. Acknowledgment is made to SREB for the dissertation award to PMLR and the Georgia State University Research Fund for support of this work.

References and Notes

- a) S. Denmark and Z. Wu, J. Org. Chem., 63, 2810 (1998); b) M. Frohn, X. Wang, and Y. Shi, J. Org. Chem. 63, 6425 (1998); c) D. Yang, M. Wong, C. Yip, J. Org. Chem. 60, 3887 (1996); d) W. Adam, L. Hadjiarapogolonu, A. Sherz, Chem. Ber. 124, 227 (1991); e) R. Curci, M. Fiorentino, L. Triosi, J. Edwards, and R. Prater, R. J. Org. Chem. 45, 4758 (1980).
- 2. R. Murray and R. Jeyaraman, J. Org. Chem. 50, 2847, (1985).
- 3. For reviews see a) R. Curci in "Advances in Oxygenated Processes" Vol. 2, A. Baumstark, Ed., JAI Press, Greenwich, CT 1990; b) W. Adam, L. Hadjiarapogolonu, R. Curci and R. Mello, Chapt.4 in "Organic Peroxides," W. Adam, Ed., Wiley and Sons: Chichester, England 1992; c) W. Adam and L. Hadjiarapogolonu, *Top. Curr. Chem.* 164, 45 (1993); d) R. Curci, A. Dinai and M. Rubino, *Pure Appl. Chem.* 67, 811 (1995)
- 4. A.L. Baumstark and C. McCloskey, Tet. Letters, 3311 (1987);
- 5. For reviews see a) A.L. Baumstark and P. Vasquez, J. Org. Chem., 53, 3437 (1988); b) A.L. Baumstark; E. Michelena-Baez; A. Navarro, and H. Banks, Het. Comm., 3, 373, (1997); c) A.L. Baumstark, H. Chen, S. Singh and P. Vasquez, Het. Comm., 6, 504 (2000).
- 6. a) W. Adam, L. Hadjiarapogolonu, X. Wang, *Tet. Lett.*, 32, 1295, (1989); b) W. Adam, L. Hadjiarapogolonu, V. Jager, J. Klicic, B. Seidel and X. Wang, *Chem. Ber.* 124, 2377 (1991); c) W. Adam, L. Hadjiarapogolonu, V. Jager and B. Seidel, *Tet. Lett.* 30, 4223 (1989).
- 7. a) R. Jablonski and E. Snyder, J. Am. Chem. Soc. 91, 4445 (1969); b) P. Barbier and C. Benezra, J. Org. Chem. 48, 2705 (1983); c) D. Curtain and M. Hurwitz, J. Am. Chem. Soc. 5381 (1952)
- 8. The six alkyl cis/trans compounds are reported as mixtures in the literature. The cis/trans ratios obtained: (3/8) 46:54; (4/7) 39:61; (5/8) 37:63; (6/9) 35:65 were in good agreement with the published results. Rate constants were determined from partial oxidations, product and kinetic studies and calculated employing the product and starting material cis/trans ratios.

Received on June 20, 2003.